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THE FLUTTER OF TOWED RIGID DECELERATORS

By Richard H. MacNeal
Astro Research Corporation

SUMMARY

The flutter of a rigid drag body towed behind a massive pri-
mary body by means of a flexible cable is examined. Nyquist's
criterion is used to show that, in order to prevent flutter for
all cable lengths, the real part of the mechanical input imped-
ance to the drag body at the cable attachment point must be posi-
tive at all frequencies. This result is used to derive relation-
ships between geometric and aerodynamic parameters that define
the boundary for unconditional stability (stability at all cable
lengths).

The most important general results are that stability is
improved by moving the cable attachment point forward and that
the optimum position of the center of gravity is midway between
the cable attachment point and a modified center of pressure,
where the modification depends primarily on Cmq .

The results of the general analysis are applied to a conical
shell decelerator in Newtonian flow. It is shown that a conical
shell towed from its apex and with uniform surface mass density
is unconditionally stable provided that the semi-apex angle ex-
ceeds 15.5° .

INTRODUCTION

A towed aerodynamic decelerator system consists of three
elements, as shown in Figure 1l: a drag body, a primary body or
payload, and a flexible cable connecting the two bodies. Flutter
of such systems has been observed in wind tunnels, so that the
conditions under which flutter can exist are of interest.

The following assumptions will be made concerning the ele-
ments of a towed decelerator system.



Drag Body.—— The drag body is rigid and is connected to the
cable at a forward apex. It is symmetrical with re-
spect to at least two planes and does not spin.

Primary Body.— The primary body is assumed to be so massive
that all of the drag force is transmitted to it, and
that its transverse motions are negligibly small.

These assumptions correspond to wind tunnel conditions.

Cable.— The cable is flexible and inextensional, i.e., it
transmits no bending or twisting moments and does not
deform parallel to its axis. Aerodynamic forces acting
on the cable are neglected. The distributed mass of
the cable is not neglected.

In view of the above assumptions, the system may be considered,
for purpose of analysis, as consisting of two objects, the

drag body and the cable, that move in a plane and that interact
with each other by virtue of the lateral translation at their
point of connection. The motions of the drag body can, further-
more, be described by two quantities - rotation in the plane of
motion, and lateral translation at the point of connection to the
cable. Positive sign conventions for these motions are establish-
ed in Figure 1.

SYMBOLS
B . B , B , B aerodynamic damping coefficients, see
i1 12 21 2= Equation (5)
CD drag coefficient
Cmq pitching moment derivative of pitching velocity
qu normal force derivative of pitching velocity
CnOL normal force derivative of angle of attack
F external lateral force applied at cable attachment point
Fc lateral force on cable




d lateral force on drag body
h lateral translation at cable attachment point
I second moment of inertia about cable attachment point
i=/-1
Kc effective spring constant of cable
K12 K aerodynamic stiffness coefficients, see Equation (5)

r 22

k radius of gyration in pitch about cable attachment point
ko radius of gyration, in pitch, about center of gravity
Lb height of cone
LC length of cable

g distance from cable attachment point to center of gravity
ch distance from cable attachment point to center of pres-

ure
M mass of drag body
m mass per unit length of cable
d
P =5t
R base radius of drag body
Rd real part of Zd
S first moment of inertia about cable attachment point
T tension in cable
. time

Xc imaginary part of Zc
Xd imaginary part of Zd



Zc mechanical impedance of cable, see Equation (4)

Zd mechanical impedance of drag body, see Equation (6)
B=%k?/0 14

Cg cp
Y semi-apex angle of cone
Yc minimum semi-apex angle for unconditional stability
8 see Equation (2)
0 pitch angle in inertial space
W frequency, rad/sec
A=RC_ /L _C

ng cp na

n = R®C_ /12 C
mg Cp na

MATHEMATICAL REPRESENTATION OF THE CABLE

Since the mass of the flexible cable is distributed, it is
not possible to accurately describe the motions of the cable by
means of a finite set of coordinates. The motion of the cable
at the connection point could be adequately approximated by a
small number of vibration modes. However, it is more convenient,
in the approach to be taken, to describe the motion at the con-
nection point by means of the following relationship between
force and displacement derived in Appendix A.

F

C

= = K_ = T&-ctn(é&c) (1)
where
and



T = tension in cable
m = mass per unit length of the cable

LC = length of the cable

W frequency, rad/sec

Note that, for w =0 , K, = T/LC in agreement with elementary

theory, and that as the frequency increases, the stiffness coef-
ficient repeatedly spans the entire range of values from =~ o«

to + o . In subsequent work, use will be made of the mechani-
cal impedance of the cable at real frequencies

F K
E'—S—':'—c:—' . Q
Zc ah T i /mT-.-ctn wLC T) (3)
dt

In terms of the differential operator p = iw

m
Pt /;

MATHEMATICAL REPRESENTATION OF THE DRAG BODY

14

2 = — JmT-ctnh (4)

C

The relationship between forces and motions of the drag body
is represented by the following matrix equation.

B p + MpZIK - - Sp® F
ST SR R CYRS P A - S S _da_ (5)
- B p~ Sp°IK + B + Ip?® 6 0
21 | 22 22
The coefficients B , B , B , B , K and K
11 12 21 22 12 22

are due to aerodynamic forces. The relationship between these
coefficients and the aerodynamic derivatives for the drag body is
presented in Appendix B. The sign convention for motions (see
Fig. 1) is such that all coefficients appearing in Equation (5)
are positive if:

(1) The center of gravity is aft of the connection point
to the cable,



(2) The center of pressure is aft of the connection point.

(3) Positive angle of attack produces negative lift. Note

that this accounts for the positive sign of K .
12
It is the normal condition for blunt drag bodies, but

not for lifting bodies.
(4) Damping in pitch, Cmq , 1s stabilizing.

(5) The normal force derivative of pitching velocity, qu ,
is either positive or not too large a negative number.

The mechanical impedance of the drag body, as viewed from
the connection point to the cable, is from Equation (5):

F. F ("'K + B p+Sp)(B p+Sp2)
— e— o —— -— -1 2.1
23 = R oh B+ Mp (K + B P T 1p° ) (6)
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GENERAL THEORY

The stability of the decelerator system can be examined by
considering the relationship between lateral translation at the
connection point, and an external force applied to that point,

= + =3 + S
F FC Fd (Zc Zd)h (7)
where ZC is the mechanical impedance of the cable and Zd is
the mechanical impedance of the drag body. For self-excited
motions the external force, F , 1is zero.

In general the coefficient Zc + Zd is a function of the

differential operator p = d/dt .

In the present instance Zd is a ratio of two polynomials

given by Equation (6), and Zc is a transcendental function




given by Equation (4). It is shown in Laplace transform theory
that the system is stable provided that ZC + Zd has no roots

with positive real parts, i.e. provided that the zeroes of
ZC + Zd occur in the left half of the p plane.
The function Zc + Zd also has poles. The poles corres-

pond to eigenvalues of the system when it is rigidly restrained
at the connection point such that h = 0 in Equation (7) for
any value of the constraining force, F .

The significance of the zeroes and poles of Zc + Zd

results from Nyquist's theorem (Reference 1), which is: —
Consider the function Z(p) which is regular except at isolated
poles. Then, if the function Z(p) is plotted as p assumes
values along the imaginary axis from — « to + o , the number
of times that the plot encircles the origin is equal to the
difference between the number of zeroes and poles in the right

half of the p plane. — 1

Hence, if it can be shown, on general grounds, that Zc + Zd

has no poles in the right half plane, then the system will be

stable if the Nyquist plot of Zc + Zd does not encircle the

origin. The condition for the absence of poles in the right half
plane is easily demonstrated in the present instance since, as
observed above, the poles of Zc + Zd are the eigenvalues of the

system when rigidly restrained at the cable connection point. If
the system is stable when so constrained, there will be no poles
in the right half of the p plane.

A rigid constraint removes the coupling between the drag
body and the cable. The cable will be stable in this condition
because, by assumption, no aerodynamic forces — destabilizing
or otherwise — act on it. We can, if we like, assume the
existence of a small amount of structural damping in the cable
to shift its zeroes and poles slightly to the left of the imagin-
ary axis. The drag body is stable when h is constrained to

zero provided that K , B and I 1in Equation (5) are all
223 22

positive. This condition is assumed. Thus the constrained
system is stable, Zc + Zd has no poles in the right half plane,

and the towed decelerator will be stable provided that the plot
of Zc + Zd as a function of frequency, does not encircle the




origin as w varies from — o to + ® |

It is apparent, from Equation (3) that ZC is restricted

to the imaginary axis for p = iw and that it repeatedly spans
the entire axis as frequency is varied. We will later require
more exact knowledge of Zd . but for the present, let it be
assumed that the plot of Zd as a function of frequency has the

character shown in Figure 2.

The plot of Zd for W < 0 is the mirror image about the

real axis of the plot for ®w > 0 . The important property of

Zd shown in Figure 2, 1is that its real part is negative for

w < w<w . While W is in this range, let it be assumed
1

2
that the plot of ZC moves upward along the imaginary axis from

XCl to Xcz . That Zc always moves upward is apparent from

Equation (3).

Now if ZC is added to 7Z it is apparent that the plot

d ’

of Zc + Z will encircle the origin if X + Xc < 0 and

d dl 1
Xd + Xc > 0 . If this is true, then the imaginary part of
2 2
+
Zc Zd d
interval wl <w<w . Examination of Figure 2 yields the
2

following theorems.

If Zd has the character shown in Figure 2: -

, namely X + X , must be zero at some point in the
c

(1) The system will be unstable if, and only if, the
imaginary part of ZC + Zd vanishes at some point in

the frequency interval within which the real part of
Zd is negative.

(2) If the zeroes of the imaginary part of ZC + Zd for

P - iw are examined, the system will be stable if, and
only if, the real part of Zd is positive at all the
zeroes.

(3) If the real part of 2 is always positive for

d
p = iw , the system will be stable.




We are now prepared to examine the question of stability as
the cable is payed out, i.e., as the length of the cable increases
from zero to some large value. During this process, the value
of ZC at a given frequency, wo , will, from Equation (3), assume

all values from — i to + i . Therefore, it is inevitable
that, if the real part of Zd is negative in any small frequency

range, a length of cable can be found for which the imaginary part
of Zc + Zd vanishes within the range. The system will there-

fore be unstable for certain ranges of cable length as long as the
real part of 2 is negative in any part of the frequency spect-
rum. The only way to ensure stability during cable reel-out is

to insist that the real part of Zd be positive at all frequen-

cies. 1If, on the other hand, it is only required that the system
be stable in its fully deployed position, the requirement on Zd

is less restrictive. Theorems (1) or (2) above may then be used
to answer the stability question.

The conclusions reached above have been partially verified
by wind tunnel tests. 1In such tests it is frequently observed
that the towed decelerator passes through alternating regions of
stability and instability as the length of cable is increased.

It should not be surprising that the requirement that Zd

have positive real part at all frequencies is sufficient for
stability. This requirement merely states that the decelerator
must absorb power, rather than generate power, when excited by a
lateral force at the attachment point. What is perhaps less ob-
vious is that the same requirement is necessary for stability at
all cable lengths.

In the remainder of this paper, the conservative requirement
that the real part of Zd be positive at all frequencies will be

examined. This requirement will be termed "unconditional stabil-
ity", i.e., stability for all values of cable length. It is also
a realistic requirement for decelerators that may be used with a
variety of cables.



REQUIREMENT FOR UNCONDITIONAL STABILITY

The first task is to compute the real part of ZC = Rd + iXd

from Equation (6) with p = iw .

~K —SuP+iuB ).(—-Sw3+in HK ~TuP—iuwB )
1 o 1= o 1 20 22

d 11 iw[(K22~Im2)2+uPBz ]

(8)

22

In order to simplify calculation, it will be assumed that the
damping coefficients, B's , are small compared to the mass and
stiffness terms. This is equivalent to assuming that the mass
of the drag body is large compared to the mass of the fluid it
displaces. This condition is usually satisfied in supersonic
flight. Eliminating second and higher power of the B's ,
Equation (8) becomes

/Bll(Kzg - Iwa)z + B Swa)-(K T Iwz) \
2

Rd = Kéa— iup)z < + B21(K12 + SQP}(Kzz - I“ﬁ) & (9)
+ Bzz(Kla + Swz) SuP )

The decelerator system has unconditional stability only if

Rd is positive. Using the limiting condition, Rd =0, to

express the flutter boundary, the following quadratic equation
in ®® is obtained

Awt + Bw® + C =0 (10)

where

10




A=B I° +B S8 ~-|B + B SI )

11 22 12 21
B=-2B K I+B SK + B (SK - IK ) + B SK > (11)
11 23 iz 22 21 22 1z 22 iz
13
C=B K +B K K
11 22 21 12 232 /

In order for a flutter boundary to exist, Equation (10)
must have at least one positive real root.

Positive real roots will not occur and R will be positive

at all frequencies if A > 0, C > 0 and B+ 2/AC'> 0 .
With some rearrangement of Equation (11) these conditions are,
assuming B and K to be inherently positive
11 22
B g2 B _+B \g
+ _aa(—) - |22 2118
1 = I B - >0 (12)
11 11
B K
_B.L._l.a. > 0
1+ B - (13)
11 22
and
B + B K B
-9 4| k2 21|8 | 12|.22,85 _ _al
B I K B I
11 22 11 11
B )2 B +B \g Y B K |5
—2a2 - | 221121, 21,43 >
¥ 201+ 2 (I) - 2|+ 2 0 (14)
11 11 11 32

The time has now come to convert the generalized coefficients
in these equations into coefficients involving the physical pro-
perties of the drag body. Since S is the first moment of mass

11



about the cable attachment point, and I is the second moment,
it follows that

4
S C
ri 'Eg (15)

where ch is the distance from the cable attachment point to

the center of gravity and k 1is the radius of gyration about the
attachment point. The ratios of aerodynamic coefficients ob-
tained from Appendix B are:

K C
1 D
2=l o (16)
22 cp\ na
B RLCanq chmq
. ki = 2 + _—
; B ch C C (17)
: 11 no no
} B RC_
e = tep ¥ T (18)
11 na
B
Eal = ch (19)

11l

where

R = base radius of drag body

&c = distance from cable attachment point to the
P center of pressure, defined as the point
about which the static aerodynamic moment is
zero
C_. = drag coefficient

12




c ,¢C = coefficient of force normal to the axis of the

na nq displaced body due, respectively, to: angle of
attack, and pitching velocity.
Cmq = coefficient of moment due to pitching velocity

It is convenient to define the following parameters:

k2
L 2
cg cp

RC
) (20)
cp na

R2C
_ __mg /
n=%1 ¢
Cp na

Substituting the above results into Equations (12), (13),
and (14), the requirements for unconditional stability become

1 1
l+521+>"”)"'(2+)‘)6>0 (21)
c
D
s > 0 (22)
ng
and
c
1 (D 1
-2+ 2+ N2 -alia e~ -1
+ (2 + )B + C 1 B(l n)
no
C % 1
po s ma s - - 2+ 03?0 (23)
no

It will be noted immediately that Equation (22) is always satis-
fied for any reasonable aerodynamic body.

Numerical values of the derivatives due to pitching velocity,

13



‘ qu and Cmq , are not easily obtained from wind tunnel measure-

ments. They can be estimated theoretically using, for example,
Newtonian flow theory in hypessonic flow. The most that can be
said without further investigation is that qu is probably

small, and that Cmq is probably negative.

If qu and hence A 1is omitted, Equation (21) becomes,

upon multiplication by B?® ,
(L- B)2 —1n >0 (24)

and Equation (23) becomes, upon multiplication by B , assumed
positive,

c c c. \% L
ED—+1.(1—B)—62——171+2-C—D—--[(1—B)2—n]2>0 (25)
na na nag

The flutter boundary is obtained by converting Equations (24)
and (25) into equalities. When this is done Equation. (25) may be
solved for B , giving

C C L
D D | e
L+ 57 In £ 2{=—]-(n* ~m)*
_ na na
B =1+ c (26)
1 - "p/C
na
CD
The (+) sign is to be used for E—— < 1 and the (-) sign
. CD nao
is to be used for E_- > 1 .
na

Flutter boundaries are plotted in Figure 3.

Equation (24) provides a flutter boundary only for C >0 .
m

Equation (26) provides a flutter boundary only for C < 0 . The
2 mq
latter statement is true because B as obtained from Equation (26)

14




is complex for 0 < n <1 and because, if 71 > 1 , B becomes
22
negative violating a basic assumption on which the analysis is

based, see page 9. Since normally Cmq < 0 , Eguation (26)

is the more important flutter boundary.

The following asymptotic behaviour of Equation (26) is noted:

If

CD

E——'——.'l g — o (27)

nao

CD

E——’O B ——e 1 + n (28)

na

CD

— == B —= 1 - q (29)

na

n—=0 B ——e 1 (30)
dg
— —— —

n—20 an (31)

The parameter B is directly related to the inertia proper-
ties of the drag body and hence may be used to determine flutter
free balance conditions. The larger the value of B , the less
severe the balance requirement. It is clear from the asymptotic
behaviour of B that a drag body for which the normal force
coefficient is approximately equal to the drag coefficient is
inherently more stable than other configurations, provided that
Cmq is negative.

A useful expression for the location of the center of gravity
may be derived by noting that

k® = 4° + k° (32)
cg (o]

15



where ko is the radius of gyration about the center of gravity.

Thus, employing the definition of B from Equation (20) there
results

22+ kK® - BL -1 =0 (33)
cg o) cp <Cg

The permissible range of ch for Cmq < 0 , obtained by
solving Equation (33), is

BL BL__\? o BL BL \2 ’
- [1—==B] - k2 <4 <R, [|—=B| - (34)
2 2 0 cg 2 2 o
where B

is determined from the aerodynamic requirements,
Equations (21) and (23), or in case qu = 0 , from Figure 3.

Since B and &CD appear in product form, the product B&c

P
will, for convenience, be termed the distance from the attachment

point to a "modified" center of pressure.
The following conclusions can then be drawn:

(1) Absence of flutter cannot be guaranteed unless
Bch > 2kO i.e., unless the distance from the

attachment point to the modified center of pressure
is greater than twice the radius of gyration in pitch.

(2) The optimum position for the center of gravity is half
way between the cable attachment point and the modified
center of pressure.

(3) The most effective mechanical means for preventing
flutter is to move the cable attachment point as far
forward as possible. This can be done by attaching
a relatively rigid sting to the apex of the decelerator.

The relationship described by Equation (34) is plotted in
Figure 4.

16




FLUTTER OF A TOWED CONE IN NEWTONIAN FLOW

Consider the conical decelerator shown in Figure 5. The
aerodynamic parameters of a cone in Newtonian flow are derived
in Appendix C, where it is shown that

2 .
=+R/siny-cosyY

iNS
il

cp 3
C = 2.cos”y
na .
C. = 2.sin®Yy (35)
D
C =0
nq
c = —2

mg 9.sin®y

where R 1is the base radius and Y is the semi-apex angle.
Since the height of the cone &b = R/tanyY , the ratio of center of
pressure to height is

&cp 2
Lb = 3.cos®Y (36)

Thus for large cone angles the center of pressure is well aft
of the base.
Since C =0 and C < 0, Equation (26) may be used
ng ng

directly to obtain the flutter boundary. From the results stated
in Equation (35), the aerodynamic parameters required in
Equation (26) are

17



C
EQ— = tan®y
na, $
(37)
C
RV mg (2., e 2 -1 __1
n = LC Cna = |gsiny.cosTY 18.sin®y.cos® v | 8
p J

Hence, by inspection of Figure 3, the largest permissible value
of B wvaries from .875 (for Y = 0), to o (for Y = 45°), and
back to 1.125 (for Y = 90°). The exact functional relationship,
obtained by substituting from Equation (37) into Equation (26),

is

1l £ 3.5in2Y
8.cos2Y

B=1- (38)

The (+) sign is used for Y > 45° and the (-) sign is used
for vy < 45°.,

If the mass of the cone is uniformly distributed in a thin
layer over its surface, the distance from the apex to the center
of gravity is

while the square of the radius of gyration about the apex is

@ = Lozfn s doeanty |

Hence, using these relationships and Equation (36)

k2

Nej

B =

= . 2
) —8COSY

) (39)
cp cg

. 2,1 _91, -1 _. 2
1+ 5 tan Y) = 8(1 5 sin®yY

Comparing Equations (38) and (39), it is seen that the cone
will flutter at some cable length for small semi-apex angles, and
that it is unconditionally stable for large semi-apex angles. The
smallest value of Y for which the towed conical shell is

18




unconditionally stable, as obtained by equating B in
Equations (38) and (39), is YC = 15.5° .

The result that towed cones with large semi-apex angles are
unconditionally stable contradicts available experimental results.
Tests in the Mach Number range from 1.57 to 4.65 reported in
Reference 2 indicate that cones with 30°, 35° and 40° semi-
apex angles are stable but that a cone with a 45° semi-apex
angle is unstable. Instability appeared to be associated with
shock wave detachment.

Some insight into the stability problem for towed cones may
be obtained from examination of Figure 6 where the location of the
center of pressure predicted by Equation (36) is compared with the
location required for stability, as obtained from Equation (38)
and the formulas for ch and k® . It will be observed that

stability at semi-apex angles greater than 45° requires a rapid
rearward shift of the center of pressure. Newtonian impact
theory predicts such a shift, whereas available experimental
evidence suggests that it does not occur for Mach numbers
below 5.

Flared cones also have a tendency toward instability. Super-
sonic measurements on flared cones with tension shell geometry
(Ref. 3), indicate that the center of pressure is located approx-
imately % base radius forward of the base regardless of cone
height, and that the ratio of the drag coefficient to the normal
force coefficient is approximately equal to 5, both of which are
unfaborable characteristics for flutter. It has been observed
that the stability of a flared cone can be improved by moving the
cable attachment point forward and also by shifting the center of
gravity forward, as predicted by the results contained in this
report.

An important conclusion of the present study is that experi-
mental measurements of center of pressure and normal force co-
efficient will be required in order to permit prediction of the
flutter characteristics of towed supersonic decelerators.

Astro Research Corporation
Santa Barbara, California, September 30, 1966.
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APPENDIX A

EFFECTIVE SPRING CONSTANT OF THE CABLE

The differential equation for the cable is

3*h o°h
v v 0 (A-1)

with the boundary conditions

h =20 at x =0
Fc = T‘%i at x = Lc
where
h = lateral translation of cable
m = mass per unit length
T = tension
Fc = force applied to cable at free end
LC = length of cable

A general solution that satisfies the differential equation
and the boundary condition at x = 0 1is

W
h=e t-sin(éx) (A-2)
where

s (a-3)

20



APPENDIX A (CONTINUED)

The relationship between force and displacement at the free
end is

K = =— = —= = Té-ctn(é&c) (a-4)

21



APPENDIX B.
AERODYNAMIC COEFFICIENTS
The aerodynamic forces acting on a drag body are shown in
Figure B-1l. The center of pressure is defined as the point about

which there is no steady moment due to angle of attack.

For small motion the aerodynamic forces and moment about the
center of pressure in the pitch plane may be approximated by

R.3 R, _

Fn = qAB[Cna-a + qu v 0 + Cnd v a] (B-1)
R ! R &

- . .—..e ...—-. —

Fa qAB[CD + Caaa + Caq v + ca v a] (B-2)
R 72 R

- o—ae + e -

M qABR[cmq v cmOL v a‘} (B-3)

where the C's are dimensionless coefficients and
1
g = dynamic pressure (= E-pva)

A
B

base area (= TR®)

The drag coefficient, C rather than the axial force

D 4
coefficient, Ca , is used in Equation (B-2), because the two

coefficients are identical at zero angle of attack and because

CD is a more familiar term.

The angle of attack measured to the relative wind velocity
is related to motion of the drag body by

h
a:e’—“TC]E (B—4)

When o is substituted into the aerodynamic force equations,

it is permissible to omit the terms proportional to h . These

22




APPENDIX B. (CONTINUED)

terms represent an apparent mass which will be neglible in most
practical cases. The result is

[ R
R .
= gA_|C g —~ —=B + = . |0 -
Fn q Bl na v \Y qu + Cna) (B-5)
i (o - Tee), 2 :
= + 6 — e . |0 -
Fa qABLCD Caa v | T v{Cq* Ca (B-6)
R® .
M= aA T (cmq + cm&) 8 (B-7)
The coefficients C . C. ,and C . will be omitted
na ' ag, mo

for conciseness. Their addition to the derivatives of pitching
velocity is implied.

In the flutter analysis the lateral force and the moment
about the cable attachment point are required expressed in terms

of the pitch angle and the lateral translation at the attachment
point. For this purpose, calculate

F, = F +cosb — F_.sinb (B-8)
n a

M =M~ 4 F (B-9)
cp n

P

and substitute

h =h~—-—4 6 (B-10)
cp cp

Since we are only concerned with small motions, we may set
cosf =1 and sinf® = 6 in (B-8) and retain only terms
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APPENDIX B. (CONTINUED)

proportional to the first power of the displacements. The results
are

B 6
= — e-— o — - -
Fh qAB Cna C ) CnOL v + &cpcna + Rqu)V (B-11)
M =qgA |" 4 _C 6+ 2 C '5
c B cp na cp no V
2 — 2 é
+{1{C R — & RC 4 =C o (B-12)
mg cp ng cp na/V

Referring to Equation (5) of the main text, it is seen that

K = gA - C
pAE- q B CD nao
= gA
Kgg 9 B£cpcna
A
5 - —B,
11 v na
JgA
B = RC )
12 CcCp no ng

B
\Y
gA

21 A" \chcna)
s
\Y
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APPENDIX C.

AERODYNAMIC FORCES ON A CONE IN NEWTONIAN FLOW

The aerodynamic pressure on a surface in Newtonian flow is
given by

_ 2 -
p = pV) (c-1)

where §p 1is the density and Vn is the component of flow
normal to the surface in the free stream.

Consider the cone shown in Figure C-l1. The wind direction
lies in the X , Z plane with angle of attack ac with

respect to the axis of the cone at its apex. The X and 2
components of relative velocity for small values of a, and the

pitching velocity, 6 , are
v =v - z8 (c-2)
X
vV = va + X6 (c-3)
z c

where X and 2z are measured from the apex.

The direction cosines of the inward normal to the surface
in the X and 2 directions are

siny (c-4)

(V)]
1l

- cosYscos® (C-5)

jol]
I

The component of velocity normal to the surface is
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APPENDIX C. (CONTINUED)
V =aV + aV = sinY-(V — 2Z68) — cosYrcos®P+(Va + Xé) (Cc-6)
n X X z z c

Substituting 2 = X+tanY-.cos®
component of velocity is

, the square of the normal

V; = sin®Y(V — XetanyYecos®d)? + cos?'Y-coszq)-(VonC + Xé)z

(c-7)
— 2.sinyYecosYscos®«(V — X-tanY-cosmé%(Vac + X0
Retaining only terms to first order in a and 6 , and
substituting into (C-1), the pressure is
p = pVlsin®Y — 2.sinY.cos® |cosYea + __Eé__ (c-8)
c VecosY

The axial and lateral force resultants are obtained from
Fa =JraxpdA (C-9)

Fn =‘[azpdA (c-10)

The pitching moment about the apex is obtained from

MC =-[-axZ - aZX pdA (c-11)
The element of area is
aa = £230Y, . axdo (C-12)
cosY
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APPENDIX C. (CONTINUED)

Substituting for the factors appearing in Equations (Cc-9),
(C-10), and (c-11), and carrying out the integration, we obtain

Fa = qAB2-sin3Y (to zero order in ac and é) (C~-13)
and
4 RS
= gA_|2- 2 v. = -
Fn e B[ cos™Y CI'c * 3 V-tanY] (C-14)
_ 4R R? 6 (C-15)
Mc - _qAB[3-tanY a.* V-singY]
where
1 .
q = E'pve = dynamic pressure
AB = TR® = base area
R = base radius

The above results may be put into standard form by a trans-
formation to the center of pressure.

The location of the center of pressure is obtained from
M o) = + 4 P =0 c-16
cp( ) Mc(a) o n(a) ( )

so that from (C-14) and (C~15)
B M (a) o 2
cp Fn(a) T 7 3.sinYscosy

(Cc-17)

Now the angle of attack at the apex is related to the angle
of attack at the center of pressure by

27



APPENDIX C. (CONTINUED)

EEE 3
= - 'e
o 08 v

c (C-18)

so that, substituting into (C-14)

£
- 2-coszY'-§E

= . 2 . —
Fn = qAB 2.cos®Y.a + (C-19)

<|Z.

3estany

The coefficient of Ré/v is zero, as may be seen by substituting
for ch from (C-17). The moment about the center of pressure is

=
il

M +4¢4 F
c cp n

| 4R4
8 cp R®
= 9Ag'y 3+tany sin®Yy (c-20)

R? 1 :
= A e |- —=arb
B’y ( 9-sinBY)

where the value of ch has been substituted from (C-17). By

comparing (C-13), (C-19), and (C-20) with Equations (B-1), (B-2),
and (B-3) of Appendix B, it is concluded that, for a right
circular cone in Newtonian flow,

c, = 2+8in® Y )
e = 2+cos® Y
(c-21)
C = 0
ng
- 1
cmq T 9esin®y /
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Figure 5

Conical Decelerator
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